
csvkit
Release 1.0.5

Mar 03, 2020

Contents

1 About 1

2 Why csvkit? 3

3 Table of contents 5
3.1 Tutorial . 5

3.1.1 Getting started . 5
3.1.2 Examining the data . 8
3.1.3 Power tools . 10
3.1.4 Going elsewhere with your data . 15

3.2 Reference . 16
3.2.1 Input . 16
3.2.2 Processing . 19
3.2.3 Output and Analysis . 26
3.2.4 Common arguments . 36

3.3 Tips and Troubleshooting . 37
3.3.1 Tips . 37
3.3.2 Troubleshooting . 38

3.4 Contributing to csvkit . 40
3.4.1 Getting Started . 40
3.4.2 Principles of development . 41
3.4.3 How to contribute . 41
3.4.4 A note on new tools . 42
3.4.5 Streaming versus buffering . 42
3.4.6 Legalese . 42

3.5 Release process . 43
3.6 License . 43
3.7 Changelog . 44

3.7.1 1.0.5 - March 2, 2020 . 44
3.7.2 1.0.4 - March 16, 2019 . 44
3.7.3 1.0.3 - March 11, 2018 . 44
3.7.4 1.0.2 - April 28, 2017 . 45
3.7.5 1.0.1 - December 29, 2016 . 46
3.7.6 1.0.0 - December 27, 2016 . 46
3.7.7 0.9.1 - March 31, 2015 . 48
3.7.8 0.9.0 - September 8, 2014 . 48
3.7.9 0.8.0 - July 27, 2014 . 49

i

3.7.10 0.7.3 - April 27, 2014 . 49
3.7.11 0.7.2 - March 24, 2014 . 50
3.7.12 0.7.1 - March 24, 2014 . 50
3.7.13 0.7.0 - March 24, 2014 . 50
3.7.14 0.6.1 - August 20, 2013 . 50
3.7.15 0.6.0 - August 20, 2013 . 50
3.7.16 0.5.0 - August 21, 2012 . 51
3.7.17 0.4.4 - May 1, 2012 . 51
3.7.18 0.4.3 - February 20, 2012 . 51

4 Citation 53

5 Authors 55

6 Indices and tables 59

ii

CHAPTER 1

About

csvkit is a suite of command-line tools for converting to and working with CSV, the king of tabular file formats.

It is inspired by pdftk, GDAL and the original csvcut tool by Joe Germuska and Aaron Bycoffe.

Important links:

• Documentation: http://csvkit.rtfd.org/

• Repository: https://github.com/wireservice/csvkit

• Issues: https://github.com/wireservice/csvkit/issues

• Schemas: https://github.com/wireservice/ffs

First time? See Tutorial.

Note: To change the field separator, line terminator, etc. of the output, you must use csvformat.

Note: csvkit, by default, sniffs CSV formats (it deduces whether commas, tabs or spaces delimit fields, for example),
and performs type inference (it converts text to numbers, dates, booleans, etc.). These features are useful and work
well in most cases, but occasional errors occur. If you don’t need these features, set --snifflimit 0 (-y 0) and
--no-inference (-I).

1

https://travis-ci.org/wireservice/csvkit
https://coveralls.io/r/wireservice/csvkit
https://pypi.python.org/pypi/csvkit
https://pypi.python.org/pypi/csvkit
https://pypi.python.org/pypi/csvkit
https://pypi.python.org/pypi/csvkit
http://csvkit.rtfd.org/
https://github.com/wireservice/csvkit
https://github.com/wireservice/csvkit/issues
https://github.com/wireservice/ffs
https://docs.python.org/3.5/library/csv.html#csv.Sniffer

csvkit, Release 1.0.5

Note: If you need to do more complex data analysis than csvkit can handle, use agate. If you need csvkit to be faster
or to handle larger files, you may be reaching the limits of csvkit. Consider loading the data into SQL, or using xsv.

2 Chapter 1. About

https://github.com/wireservice/agate
https://github.com/BurntSushi/xsv

CHAPTER 2

Why csvkit?

Because it makes your life easier.

Convert Excel to CSV:

in2csv data.xls > data.csv

Convert JSON to CSV:

in2csv data.json > data.csv

Print column names:

csvcut -n data.csv

Select a subset of columns:

csvcut -c column_a,column_c data.csv > new.csv

Reorder columns:

csvcut -c column_c,column_a data.csv > new.csv

Find rows with matching cells:

csvgrep -c phone_number -r "555-555-\d{4}" data.csv > new.csv

Convert to JSON:

csvjson data.csv > data.json

Generate summary statistics:

csvstat data.csv

Query with SQL:

3

csvkit, Release 1.0.5

csvsql --query "select name from data where age > 30" data.csv > new.csv

Import into PostgreSQL:

csvsql --db postgresql:///database --insert data.csv

Extract data from PostgreSQL:

sql2csv --db postgresql:///database --query "select * from data" > new.csv

And much more. . .

4 Chapter 2. Why csvkit?

CHAPTER 3

Table of contents

3.1 Tutorial

The csvkit tutorial walks through processing and analyzing a real dataset:

3.1.1 Getting started

About this tutorial

There is no better way to learn how to use a new tool than to see it applied in a real world situation. To that end, this
tutorial explains how to use csvkit tools by analyzing a real dataset.

The data we will be using is a subset of the United States Defense Logistic Agency Law Enforcement Support Office’s
(LESO) 1033 Program dataset, which describes how surplus military arms have been distributed to local police forces.
This data was widely cited in the aftermath of the Ferguson, Missouri protests. The particular data we are using comes
from an NPR report analyzing the data.

This tutorial assumes you have some basic familiarity with the command line. If you don’t have much experience, fear
not! This has been written with beginners in mind. No prior experience with data processing or analysis is assumed.

Installing csvkit

Installing csvkit is easy:

sudo pip install csvkit

If you have problems installing, look for help in the Tips and Troubleshooting section of the documentation.

Note: If you’re familiar with virtualenv, it is better to install csvkit in its own environment. If you are doing this, then
you should leave off the sudo in the previous command.

5

http://www.npr.org/2014/09/02/342494225/mraps-and-bayonets-what-we-know-about-the-pentagons-1033-program
http://virtualenv.readthedocs.org/en/latest/

csvkit, Release 1.0.5

Getting the data

Let’s start by creating a clean workspace:

mkdir csvkit_tutorial
cd csvkit_tutorial

Now let’s fetch the data:

curl -L -O https://raw.githubusercontent.com/wireservice/csvkit/master/examples/
→˓realdata/ne_1033_data.xlsx

in2csv: the Excel killer

For purposes of this tutorial, I’ve converted this data to Excel format. (NPR published it in CSV format.) If you have
Excel you can open the file and take a look at it, but really, who wants to wait for Excel to load? Instead, let’s convert
it to a CSV:

in2csv ne_1033_data.xlsx

You should see a CSV version of the data dumped into your terminal. All csvkit tools write to the terminal output,
called “standard out”, by default. This isn’t very useful, so let’s write it to a file instead:

in2csv ne_1033_data.xlsx > data.csv

data.csv will now contain a CSV version of our original file. If you aren’t familiar with the > syntax, it means
“redirect standard out to a file”. If that’s hard to remember it may be more convenient to think of it as “save to”.

We can verify the that the data is saved to the new file by using the cat command to print it:

cat data.csv

in2csv can convert a variety of common file formats to CSV, including both .xls and .xlsx Excel files, JSON files,
and fixed-width formatted files.

csvlook: data periscope

Now that we have some data, we probably want to get some idea of what’s in it. We could open it in Excel or Google
Docs, but wouldn’t it be nice if we could just take a look in the command line? To do that, we can use csvlook:

csvlook data.csv

At first the output of csvlook isn’t going to appear very promising. You’ll see a mess of data, pipe character and dashes.
That’s because this dataset has many columns and they won’t all fit in the terminal at once. You have two options:

1. Pipe the output to less -S to display the lines without wrapping and use the arrow keys to scroll left and right:

csvlook data.csv | less -S

2. Reduce which columns of our dataset are displayed before we look at it. This is what will do in the next section.

csvcut: data scalpel

csvcut is the original csvkit tool. It inspired the rest. With it, we can select, delete and reorder the columns in our CSV.
First, let’s just see what columns are in our data:

6 Chapter 3. Table of contents

csvkit, Release 1.0.5

csvcut -n data.csv

1: state
2: county
3: fips
4: nsn
5: item_name
6: quantity
7: ui
8: acquisition_cost
9: total_cost

10: ship_date
11: federal_supply_category
12: federal_supply_category_name
13: federal_supply_class
14: federal_supply_class_name

As you can see, our dataset has fourteen columns. Let’s take a look at just columns 2, 5 and 6:

csvcut -c 2,5,6 data.csv

Now we’ve reduced our output CSV to only three columns.

We can also refer to columns by their names to make our lives easier:

csvcut -c county,item_name,quantity data.csv

Putting it together with pipes

Now that we understand in2csv, csvlook and csvcut we can demonstrate the power of csvkit’s when combined with the
standard command-line “pipe”. Try this command:

csvcut -c county,item_name,quantity data.csv | csvlook | head

In addition to specifying filenames, all csvkit tools accept an input file via “standard in”. This means that, using the |
(“pipe”) character we can use the output of one csvkit tool as the input of the next.

In the example above, the output of csvcut becomes the input to csvlook. This also allow us to pipe output to standard
Unix commands such as head, which prints only the first ten lines of its input. Here, the output of csvlook becomes
the input of head.

Piping is a core feature of csvkit. Of course, you can always write the output of each command to a file using >.
However, it’s often faster and more convenient to use pipes to chain several commands together.

We can also pipe in2csv, allowing us to combine all our previous operations into one:

in2csv ne_1033_data.xlsx | csvcut -c county,item_name,quantity | csvlook | head

Summing up

All the csvkit tools work with standard input and output. Any tool can be piped into another and into another. The
output of any tool can be redirected to a file. In this way they form a data processing “pipeline” of sorts, allowing you
to do non-trivial, repeatable work without creating dozens of intermediary files.

Make sense? If you think you’ve got it figured out, you can move on to Examining the data.

3.1. Tutorial 7

csvkit, Release 1.0.5

3.1.2 Examining the data

csvstat: statistics without code

In the previous section we saw how we could use csvlook and csvcut to view slices of our data. This is a good tool for
exploring a dataset, but in practice we usually need to get the broadest possible view before we can start diving into
specifics.

csvstat is designed to give us just such a broad understanding of our data. Inspired by the summary() function from
the computational statistics programming language “R”, csvstat will generate summary statistics for all the data in a
CSV file.

Let’s examine summary statistics for a few columns from our dataset. As we learned in the last section, we can use
csvcut and a pipe to pick out the columns we want:

csvcut -c county,acquisition_cost,ship_date data.csv | csvstat

1. county
Text
Nulls: False
Unique values: 35
Max length: 10
5 most frequent values:

DOUGLAS: 760
DAKOTA: 42
CASS: 37
HALL: 23
LANCASTER: 18

2. acquisition_cost
Number
Nulls: False
Min: 0.0
Max: 412000.0
Sum: 5430787.55
Mean: 5242.072924710424710424710425
Median: 6000.0
Standard Deviation: 13368.07836799839045093904423
Unique values: 75
5 most frequent values:

6800.0: 304
10747.0: 195
6000.0: 105
499.0: 98
0.0: 81

3. ship_date
Date
Nulls: False
Min: 2006-03-07
Max: 2014-01-30
Unique values: 84
5 most frequent values:

2013-04-25: 495
2013-04-26: 160
2008-05-20: 28
2012-04-16: 26
2006-11-17: 20

Row count: 1036

8 Chapter 3. Table of contents

http://www.r-project.org/

csvkit, Release 1.0.5

csvstat infers the type of data in each column and then performs basic statistics on it. The particular statistics computed
depend on the type of the column (numbers, text, dates, etc).

In this example the first column, county was identified as type Text. We see that there are 35 counties represented
in the dataset and that DOUGLAS is far and away the most frequently occurring. A quick Google search shows that
there are 93 counties in Nebraska, so we know that either not every county received equipment or that the data is
incomplete. We can also find out that Douglas county contains Omaha, the state’s largest city by far.

The acquisition_cost column is type Number. We see that the largest individual cost was 412000.0. (Prob-
ably dollars, but let’s not presume.) Total acquisition costs were 5430787.55.

Lastly, the ship_date column (type Date) shows us that the earliest data is from 2006 and the latest from 2014.
We may also note that an unusually large amount of equipment was shipped in April, 2013.

As a journalist, this quick glance at the data gave me a tremendous amount of information about the dataset. Although
we have to be careful about assuming to much from this quick glance (always double-check the numbers mean what
you think they mean!) it can be an invaluable way to familiarize yourself with a new dataset.

csvgrep: find the data you need

After reviewing the summary statistics you might wonder what equipment was received by a particular county. To get
a simple answer to the question we can use csvgrep to search for the state’s name amongst the rows. Let’s also use
csvcut to just look at the columns we care about and csvlook to format the output:

csvcut -c county,item_name,total_cost data.csv | csvgrep -c county -m LANCASTER |
→˓csvlook

county	item_name	total_cost
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	LIGHT ARMORED VEHICLE	0
LANCASTER	LIGHT ARMORED VEHICLE	0
LANCASTER	LIGHT ARMORED VEHICLE	0
LANCASTER	MINE RESISTANT VEHICLE	412,000
LANCASTER	IMAGE INTENSIFIER,NIGHT VISION	6,800
LANCASTER	IMAGE INTENSIFIER,NIGHT VISION	6,800
LANCASTER	IMAGE INTENSIFIER,NIGHT VISION	6,800
LANCASTER	IMAGE INTENSIFIER,NIGHT VISION	6,800

LANCASTER county contains Lincoln, Nebraska, the capital of the state and its second-largest city. The -m flag means
“match” and will find text anywhere in a given column–in this case the county column. For those who need a more
powerful search you can also use -r to search for a regular expression.

csvsort: order matters

Now let’s use csvsort to sort the rows by the total_cost column, in reverse (descending) order:

3.1. Tutorial 9

csvkit, Release 1.0.5

csvcut -c county,item_name,total_cost data.csv | csvgrep -c county -m LANCASTER |
→˓csvsort -c total_cost -r | csvlook

county	item_name	total_cost
LANCASTER	MINE RESISTANT VEHICLE	412,000
LANCASTER	IMAGE INTENSIFIER,NIGHT VISION	6,800
LANCASTER	IMAGE INTENSIFIER,NIGHT VISION	6,800
LANCASTER	IMAGE INTENSIFIER,NIGHT VISION	6,800
LANCASTER	IMAGE INTENSIFIER,NIGHT VISION	6,800
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	RIFLE,5.56 MILLIMETER	120
LANCASTER	LIGHT ARMORED VEHICLE	0
LANCASTER	LIGHT ARMORED VEHICLE	0
LANCASTER	LIGHT ARMORED VEHICLE	0

Two interesting things should jump out about this sorted data: that LANCASTER county got a very expensive MINE
RESISTANT VEHICLE and that it also go three other LIGHT ARMORED VEHICLE.

What commands would you use to figure out if other counties also received large numbers of vehicles?

Summing up

At this point you should be able to use csvkit to investigate the basic properties of a dataset. If you understand this
section, you should be ready to move onto Power tools.

3.1.3 Power tools

csvjoin: merging related data

One of the most common operations that we need to perform on data is “joining” it to other, related data. For instance,
given a dataset about equipment supplied to counties in Nebraska, one might reasonably want to merge that with
a dataset containing the population of each county. csvjoin allows us to take those two datasets (equipment and
population) and merge them, much like you might do with a SQL JOIN query. In order to demonstrate this, let’s grab
a second dataset:

curl -L -O https://raw.githubusercontent.com/wireservice/csvkit/master/examples/
→˓realdata/acs2012_5yr_population.csv

Now let’s see what’s in there:

csvstat acs2012_5yr_population.csv

1. fips
Number

(continues on next page)

10 Chapter 3. Table of contents

csvkit, Release 1.0.5

(continued from previous page)

Nulls: False
Min: 31001
Max: 31185
Sum: 2891649
Mean: 31093
Median: 31093
Standard Deviation: 53.98147830506311726900562525
Unique values: 93
5 most frequent values:

31001: 1
31003: 1
31005: 1
31007: 1
31009: 1

2. name
Text
Nulls: False
Unique values: 93
Max length: 23
5 most frequent values:

Adams County, NE: 1
Antelope County, NE: 1
Arthur County, NE: 1
Banner County, NE: 1
Blaine County, NE: 1

3. total_population
Number
Nulls: False
Min: 348
Max: 518271
Sum: 1827306
Mean: 19648.45161290322580645161290
Median: 6294
Standard Deviation: 62501.00530730896711321285542
Unique values: 93
5 most frequent values:

31299: 1
6655: 1
490: 1
778: 1
584: 1

4. margin_of_error
Number
Nulls: False
Min: 0
Max: 115
Sum: 1800
Mean: 19.35483870967741935483870968
Median: 0
Standard Deviation: 37.89707031274211909117708454
Unique values: 15
5 most frequent values:

0: 73
73: 2
114: 2
97: 2
99: 2

(continues on next page)

3.1. Tutorial 11

csvkit, Release 1.0.5

(continued from previous page)

Row count: 93

As you can see, this data file contains population estimates for each county in Nebraska from the 2012 5-year ACS
estimates. This data was retrieved from Census Reporter and reformatted slightly for this example. Let’s join it to our
equipment data:

csvjoin -c fips data.csv acs2012_5yr_population.csv > joined.csv

Since both files contain a fips column, we can use that to join the two. In our output you should see the population data
appended at the end of each row of data. Let’s combine this with what we’ve learned before to answer the question
“What was the lowest population county to receive equipment?”:

csvcut -c county,item_name,total_population joined.csv | csvsort -c total_population
→˓| csvlook | head

| county | item_name | total_
→˓population |
| ---------- | -- | ------
→˓---------- |
| MCPHERSON | RIFLE,5.56 MILLIMETER |
→˓ 348 |
| WHEELER | RIFLE,5.56 MILLIMETER |
→˓ 725 |
| GREELEY | RIFLE,7.62 MILLIMETER |
→˓ 2,515 |
| GREELEY | RIFLE,7.62 MILLIMETER |
→˓ 2,515 |
| GREELEY | RIFLE,7.62 MILLIMETER |
→˓ 2,515 |
| NANCE | RIFLE,5.56 MILLIMETER |
→˓ 3,730 |
| NANCE | RIFLE,7.62 MILLIMETER |
→˓ 3,730 |
| NANCE | RIFLE,7.62 MILLIMETER |
→˓ 3,730 |

Two counties with fewer than one-thousand residents were the recipients of 5.56 millimeter assault rifles. This simple
example demonstrates the power of joining datasets. Although SQL will always be a more flexible option, csvjoin will
often get you where you need to go faster.

csvstack: combining subsets

Frequently large datasets are distributed in many small files. At some point you will probably want to merge those
files for bulk analysis. csvstack allows you to “stack” the rows from CSV files with the same columns (and identical
column names). To demonstrate, let’s imagine we’ve decided that Nebraska and Kansas form a “region” and that it
would be useful to analyze them in a single dataset. Let’s grab the Kansas data:

curl -L -O https://raw.githubusercontent.com/wireservice/csvkit/master/examples/
→˓realdata/ks_1033_data.csv

Back in Getting started, we had used in2csv to convert our Nebraska data from XLSX to CSV. However, we named our
output data.csv for simplicity at the time. Now that we are going to be stacking multiple states, we should re-convert
our Nebraska data using a file naming convention matching our Kansas data:

12 Chapter 3. Table of contents

http://censusreporter.org/

csvkit, Release 1.0.5

in2csv ne_1033_data.xlsx > ne_1033_data.csv

Now let’s stack these two data files:

csvstack ne_1033_data.csv ks_1033_data.csv > region.csv

Using csvstat we can see that our region.csv contains both datasets:

csvstat -c state,acquisition_cost region.csv

1. state
Text
Nulls: False
Values: NE, KS
Max length: 2
5 most frequent values:

KS: 1575
NE: 1036

8. acquisition_cost
Number
Nulls: False
Min: 0.0
Max: 658000
Sum: 9440445.91
Mean: 3615.643780160857908847184987
Median: 138
Standard Deviation: 23730.63142202547205726466358
Unique values: 127
5 most frequent values:

120.0: 649
499.0: 449
138.0: 311
6800.0: 304
58.71: 218

Row count: 2611

If you supply the -g flag then csvstack can also add a “grouping column” to each row, so that you can tell which file
each row came from. In this case we don’t need this, but you can imagine a situation in which instead of having a
county column each of this datasets had simply been named nebraska.csv and kansas.csv. In that case,
using a grouping column would prevent us from losing information when we stacked them.

csvsql and sql2csv: ultimate power

Sometimes (almost always), the command-line isn’t enough. It would be crazy to try to do all your analysis using
command-line tools. Often times, the correct tool for data analysis is SQL. csvsql and sql2csv form a bridge that
eases migrating your data into and out of a SQL database. For smaller datasets csvsql can also leverage sqlite to allow
execution of ad hoc SQL queries without ever touching a database.

By default, csvsql will generate a create table statement for your data. You can specify what sort of database you are
using with the -i flag:

csvsql -i sqlite joined.csv

3.1. Tutorial 13

https://www.sqlite.org/

csvkit, Release 1.0.5

CREATE TABLE joined (
state VARCHAR(2) NOT NULL,
county VARCHAR(10) NOT NULL,
fips DECIMAL NOT NULL,
nsn VARCHAR(16) NOT NULL,
item_name VARCHAR(62),
quantity DECIMAL NOT NULL,
ui VARCHAR(7) NOT NULL,
acquisition_cost DECIMAL NOT NULL,
total_cost DECIMAL NOT NULL,
ship_date DATE NOT NULL,
federal_supply_category DECIMAL NOT NULL,
federal_supply_category_name VARCHAR(35) NOT NULL,
federal_supply_class DECIMAL NOT NULL,
federal_supply_class_name VARCHAR(63) NOT NULL,
name VARCHAR(21) NOT NULL,
total_population DECIMAL NOT NULL,
margin_of_error DECIMAL NOT NULL

);

Here we have the sqlite “create table” statement for our joined data. You’ll see that, like csvstat, csvsql has done its
best to infer the column types.

Often you won’t care about storing the SQL statements locally. You can also use csvsql to create the table directly in
the database on your local machine. If you add the --insert option the data will also be imported:

csvsql --db sqlite:///leso.db --insert joined.csv

How can we check that our data was imported successfully? We could use the sqlite command-line interface, but
rather than worry about the specifics of another tool, we can also use sql2csv:

sql2csv --db sqlite:///leso.db --query "select * from joined"

Note that the --query parameter to sql2csv accepts any SQL query. For example, to export Douglas county from
the joined table from our sqlite database, we would run:

sql2csv --db sqlite:///leso.db --query "select * from joined where county='DOUGLAS';"
→˓> douglas.csv

Sometimes, if you will only be running a single query, even constructing the database is a waste of time. For that case,
you can actually skip the database entirely and csvsql will create one in memory for you:

csvsql --query "select county,item_name from joined where quantity > 5;" joined.csv |
→˓csvlook

SQL queries directly on CSVs! Keep in mind when using this that you are loading the entire dataset into an in-memory
database, so it is likely to be very slow for large datasets.

Summing up

csvjoin, csvstack, csvsql and sql2csv represent the power tools of csvkit. Using these tools can vastly simplify processes
that would otherwise require moving data between other systems. But what about cases where these tools still don’t
cut it? What if you need to move your data onto the web or into a legacy database system? We’ve got a few solutions
for those problems in our final section, Going elsewhere with your data.

14 Chapter 3. Table of contents

csvkit, Release 1.0.5

3.1.4 Going elsewhere with your data

csvjson: going online

Very frequently one of the last steps in any data analysis is to get the data onto the web for display as a table, map or
chart. CSV is rarely the ideal format for this. More often than not what you want is JSON and that’s where csvjson
comes in. csvjson takes an input CSV and outputs neatly formatted JSON. For the sake of illustration, let’s use csvcut
and csvgrep to convert just a small slice of our data:

csvcut -c county,item_name data.csv | csvgrep -c county -m "GREELEY" | csvjson --
→˓indent 4

[
{

"county": "GREELEY",
"item_name": "RIFLE,7.62 MILLIMETER"

},
{

"county": "GREELEY",
"item_name": "RIFLE,7.62 MILLIMETER"

},
{

"county": "GREELEY",
"item_name": "RIFLE,7.62 MILLIMETER"

}
]

A common usage of turning a CSV into a JSON file is for usage as a lookup table in the browser. This can be illustrated
with the ACS data we looked at earlier, which contains a unique fips code for each county:

csvjson --indent 4 --key fips acs2012_5yr_population.csv | head

{
"31001": {

"fips": "31001",
"name": "Adams County, NE",
"total_population": "31299",
"margin_of_error": "0"

},
"31003": {

"fips": "31003",
"name": "Antelope County, NE",
"...": "..."

}
}

For making maps, csvjson can also output GeoJSON, see its csvjson for more details.

csvpy: going into code

For the programmers out there, the command line is rarely as functional as just writing a little bit of code. csvpy
exists just to make a programmer’s life easier. Invoking it simply launches a Python interactive terminal, with the data
preloaded into a CSV reader:

3.1. Tutorial 15

csvkit, Release 1.0.5

csvpy data.csv

Welcome! "data.csv" has been loaded in a reader object named "reader".
>>> print(len(list(reader)))
1037
>>> quit()

In addition to being a time-saver, because this uses agate, the reader is Unicode aware.

csvformat: for legacy systems

It is a foundational principle of csvkit that it always outputs cleanly formatted CSV data. None of the normal csvkit
tools can be forced to produce pipe or tab-delimited output, despite these being common formats. This principle is
what allows the csvkit tools to chain together so easily and hopefully also reduces the amount of crummy, non-standard
CSV files in the world. However, sometimes a legacy system just has to have a pipe-delimited file and it would be
crazy to make you use another tool to create it. That’s why we’ve got csvformat.

Pipe-delimited:

csvformat -D \| data.csv

Tab-delimited:

csvformat -T data.csv

Quote every cell:

csvformat -U 1 data.csv

Ampersand-delimited, dollar-signs for quotes, quote all strings, and asterisk for line endings:

csvformat -D \& -Q \$ -U 2 -M * data.csv

You get the picture.

Summing up

Thus concludes the csvkit tutorial. At this point, I hope, you have a sense a breadth of possibilities these tools open
up with a relatively small number of command-line tools. Of course, this tutorial has only scratched the surface of the
available options, so remember to check the Reference documentation for each tool as well.

So armed, go forth and expand the empire of the king of tabular file formats.

3.2 Reference

csvkit is composed of command-line tools that can be divided into three major categories: Input, Processing, and
Output. Documentation and examples for each tool are described on the following pages.

3.2.1 Input

in2csv

16 Chapter 3. Table of contents

csvkit, Release 1.0.5

Description

Converts various tabular data formats into CSV.

Converting fixed width requires that you provide a schema file with the “-s” option. The schema file should have the
following format:

column,start,length
name,0,30
birthday,30,10
age,40,3

The header line is required though the columns may be in any order:

usage: in2csv [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-L LOCALE]
[-S] [--blanks] [--date-format DATE_FORMAT]
[--datetime-format DATETIME_FORMAT] [-H] [-K SKIP_LINES] [-v]
[-l] [--zero] [-V] [-f FILETYPE] [-s SCHEMA] [-k KEY] [-n]
[--sheet SHEET] [--write-sheets WRITE_SHEETS]
[--encoding-xls ENCODING_XLS] [-y SNIFF_LIMIT] [-I]
[FILE]

Convert common, but less awesome, tabular data formats to CSV.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
-f FILETYPE, --format FILETYPE

The format of the input file. If not specified will be
inferred from the file type. Supported formats: csv,
dbf, fixed, geojson, json, ndjson, xls, xlsx.

-s SCHEMA, --schema SCHEMA
Specify a CSV-formatted schema file for converting
fixed-width files. See documentation for details.

-k KEY, --key KEY Specify a top-level key to use look within for a list
of objects to be converted when processing JSON.

-n, --names Display sheet names from the input Excel file.
--sheet SHEET The name of the Excel sheet to operate on.
--write-sheets WRITE_SHEETS

The names of the Excel sheets to write to files, or
"-" to write all sheets.

-y SNIFF_LIMIT, --snifflimit SNIFF_LIMIT
Limit CSV dialect sniffing to the specified number of
bytes. Specify "0" to disable sniffing entirely.

-I, --no-inference Disable type inference (and --locale, --date-format,
--datetime-format) when parsing CSV input.

Some command-line flags only pertain to specific input formats.

See also: Arguments common to all tools.

Note: The “ndjson” format refers to “newline delimited JSON”, as used by many streaming APIs.

3.2. Reference 17

csvkit, Release 1.0.5

Note: If an XLS looks identical to an XLSX when viewed in Excel, they may not be identical as CSV. For example,
XLSX has an integer type, but XLS doesn’t. Numbers that look like integers from an XLS will have decimals in CSV,
but those from an XLSX won’t.

Note: To convert from HTML, consider messytables.

Examples

Convert the 2000 census geo headers file from fixed-width to CSV and from latin-1 encoding to utf8:

in2csv -e iso-8859-1 -f fixed -s examples/realdata/census_2000/census2000_geo_schema.
→˓csv examples/realdata/census_2000/usgeo_excerpt.upl

Note: A library of fixed-width schemas is maintained in the ffs project:

https://github.com/wireservice/ffs

Convert an Excel .xls file:

in2csv examples/test.xls

Standardize the formatting of a CSV file (quoting, line endings, etc.):

in2csv examples/realdata/FY09_EDU_Recipients_by_State.csv

Fetch csvkit’s open issues from the GitHub API, convert the JSON response into a CSV and write it to a file:

curl https://api.github.com/repos/wireservice/csvkit/issues?state=open | in2csv -f
→˓json -v

Convert a DBase DBF file to an equivalent CSV:

in2csv examples/testdbf.dbf

This tool names unnamed headers. To avoid that behavior, run:

in2csv --no-header-row examples/test.xlsx | tail -n +2

sql2csv

Description

Executes arbitrary commands against a SQL database and outputs the results as a CSV:

usage: sql2csv [-h] [-v] [-l] [-V] [--db CONNECTION_STRING] [--query QUERY]
[-e ENCODING] [-H]
[FILE]

Execute an SQL query on a database and output the result to a CSV file.

(continues on next page)

18 Chapter 3. Table of contents

https://messytables.readthedocs.io/
https://github.com/wireservice/ffs

csvkit, Release 1.0.5

(continued from previous page)

positional arguments:
FILE The file to use as SQL query. If both FILE and QUERY

are omitted, query will be read from STDIN.

optional arguments:
-h, --help show this help message and exit
--db CONNECTION_STRING

An sqlalchemy connection string to connect to a
database.

--query QUERY The SQL query to execute. If specified, it overrides
FILE and STDIN.

-e ENCODING, --encoding ENCODING
Specify the encoding of the input query file.

-H, --no-header-row Do not output column names.

Examples

Load sample data into a table using csvsql and then query it using sql2csv:

csvsql --db "sqlite:///dummy.db" --tables "test" --insert examples/dummy.csv
sql2csv --db "sqlite:///dummy.db" --query "select * from test"

Load data about financial aid recipients into PostgreSQL. Then find the three states that received the most, while also
filtering out empty rows:

createdb recipients
csvsql --db "postgresql:///recipients" --tables "fy09" --insert examples/realdata/
→˓FY09_EDU_Recipients_by_State.csv
sql2csv --db "postgresql:///recipients" --query "select * from fy09 where \"State
→˓Name\" != '' order by fy09.\"TOTAL\" limit 3"

You can even use it as a simple SQL calculator (in this example an in-memory SQLite database is used as the default):

sql2csv --query "select 300 * 47 % 14 * 27 + 7000"

The connection string accepts parameters. For example, to set the encoding of a MySQL database:

sql2csv --db 'mysql://user:pass@host/database?charset=utf8' --query "SELECT myfield
→˓FROM mytable"

3.2.2 Processing

csvclean

Description

Cleans a CSV file of common syntax errors:

• reports rows that have a different number of columns than the header row

• attempts to correct the CSV by joining short rows into a single row

Note that every csvkit tool does the following:

3.2. Reference 19

http://docs.sqlalchemy.org/en/rel_1_0/core/engines.html#engine-creation-api

csvkit, Release 1.0.5

• removes optional quote characters, unless the –quoting (-u) option is set to change this behavior

• changes the field delimiter to a comma, if the input delimiter is set with the –delimiter (-d) or –tabs (-t) options

• changes the record delimiter to a line feed (LF or \n)

• changes the quote character to a double-quotation mark, if the character is set with the –quotechar (-q) option

• changes the character encoding to UTF-8, if the input encoding is set with the –encoding (-e) option

Outputs [basename]_out.csv and [basename]_err.csv, the former containing all valid rows and the latter containing all
error rows along with line numbers and descriptions:

usage: csvclean [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-S] [-H]
[-K SKIP_LINES] [-v] [-l] [--zero] [-V] [-n]
[FILE]

Fix common errors in a CSV file.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
-n, --dry-run Do not create output files. Information about what

would have been done will be printed to STDERR.

See also: Arguments common to all tools.

Examples

Test a file with known bad rows:

csvclean -n examples/bad.csv

Line 1: Expected 3 columns, found 4 columns
Line 2: Expected 3 columns, found 2 columns

To change the line ending from line feed (LF or \n) to carriage return and line feed (CRLF or \r\n) use:

csvformat -M $'\r\n' examples/dummy.csv

csvcut

Description

Filters and truncates CSV files. Like the Unix “cut” command, but for tabular data:

usage: csvcut [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-S] [-H]
[-K SKIP_LINES] [-v] [-l] [--zero] [-V] [-n] [-c COLUMNS]
[-C NOT_COLUMNS] [-x]
[FILE]

(continues on next page)

20 Chapter 3. Table of contents

csvkit, Release 1.0.5

(continued from previous page)

Filter and truncate CSV files. Like the Unix "cut" command, but for tabular
data.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
-n, --names Display column names and indices from the input CSV

and exit.
-c COLUMNS, --columns COLUMNS

A comma separated list of column indices, names or
ranges to be extracted, e.g. "1,id,3-5". Defaults to
all columns.

-C NOT_COLUMNS, --not-columns NOT_COLUMNS
A comma separated list of column indices, names or
ranges to be excluded, e.g. "1,id,3-5". Defaults to no
columns.

-x, --delete-empty-rows
After cutting, delete rows which are completely empty.

See also: Arguments common to all tools.

Note: csvcut does not implement row filtering, for this you should pipe data to csvgrep.

Note: If a data row is longer than the header row, its additional columns are truncated. Use csvclean first to fix such
rows.

Examples

Print the indices and names of all columns:

csvcut -n examples/realdata/FY09_EDU_Recipients_by_State.csv
1: State Name
2: State Abbreviate
3: Code
4: Montgomery GI Bill-Active Duty
5: Montgomery GI Bill- Selective Reserve
6: Dependents' Educational Assistance
7: Reserve Educational Assistance Program
8: Post-Vietnam Era Veteran's Educational Assistance Program
9: TOTAL

10:

Print only the names of all columns, by removing the indices with the cut command:

csvcut -n examples/realdata/FY09_EDU_Recipients_by_State.csv | cut -c6-
State Name
State Abbreviate
Code

(continues on next page)

3.2. Reference 21

csvkit, Release 1.0.5

(continued from previous page)

Montgomery GI Bill-Active Duty
Montgomery GI Bill- Selective Reserve
Dependents' Educational Assistance
Reserve Educational Assistance Program
Post-Vietnam Era Veteran's Educational Assistance Program
TOTAL

Extract the first and third columns:

csvcut -c 1,3 examples/realdata/FY09_EDU_Recipients_by_State.csv

Extract columns named “TOTAL” and “State Name” (in that order):

csvcut -c TOTAL,"State Name" examples/realdata/FY09_EDU_Recipients_by_State.csv

Add line numbers to a file, making no other changes:

csvcut -l examples/realdata/FY09_EDU_Recipients_by_State.csv

Extract a column that may not exist in all files:

echo d, | csvjoin examples/dummy.csv - | csvcut -c d
echo d, | csvjoin examples/join_no_header_row.csv - | csvcut -c d

Display a column’s unique values:

csvcut -c 1 examples/realdata/FY09_EDU_Recipients_by_State.csv | sed 1d | sort | uniq

Or:

csvcut -c 1 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvsql --query
→˓'SELECT DISTINCT("State Name") FROM stdin'

csvgrep

Description

Filter tabular data to only those rows where certain columns contain a given value or match a regular expression:

usage: csvgrep [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-S] [-H]
[-K SKIP_LINES] [-v] [-l] [--zero] [-V] [-n] [-c COLUMNS]
[-m PATTERN] [-r REGEX] [-f MATCHFILE] [-i]
[FILE]

Search CSV files. Like the Unix "grep" command, but for tabular data.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
-n, --names Display column names and indices from the input CSV

(continues on next page)

22 Chapter 3. Table of contents

csvkit, Release 1.0.5

(continued from previous page)

and exit.
-c COLUMNS, --columns COLUMNS

A comma separated list of column indices, names or
ranges to be searched, e.g. "1,id,3-5".

-m PATTERN, --match PATTERN
The string to search for.

-r REGEX, --regex REGEX
If specified, must be followed by a regular expression
which will be tested against the specified columns.

-f MATCHFILE, --file MATCHFILE
If specified, must be the path to a file. For each
tested row, if any line in the file (stripped of line
separators) is an exact match for the cell value, the
row will pass.

-i, --invert-match If specified, select non-matching instead of matching
rows.

-a --any-match If specified, select rows where any column matches
instead of all columns.

See also: Arguments common to all tools.

NOTE: Even though ‘-m’, ‘-r’, and ‘-f’ are listed as “optional” arguments, you must specify one of them.

Examples

Search for the row relating to Illinois:

csvgrep -c 1 -m ILLINOIS examples/realdata/FY09_EDU_Recipients_by_State.csv

Search for rows relating to states with names beginning with the letter “I”:

csvgrep -c 1 -r "^I" examples/realdata/FY09_EDU_Recipients_by_State.csv

Search for rows that do not contain an empty state cell:

csvgrep -c 1 -r "^$" -i examples/realdata/FY09_EDU_Recipients_by_State.csv

Perform a case-insensitive search:

csvgrep -c 1 -r "(?i)illinois" examples/realdata/FY09_EDU_Recipients_by_State.csv

csvjoin

Description

Merges two or more CSV tables together using a method analogous to SQL JOIN operation. By default it performs an
inner join, but full outer, left outer, and right outer are also available via flags. Key columns are specified with the -c
flag (either a single column which exists in all tables, or a comma-separated list of columns with one corresponding to
each). If the columns flag is not provided then the tables will be merged “sequentially”, that is they will be merged in
row order with no filtering:

3.2. Reference 23

csvkit, Release 1.0.5

usage: csvjoin [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-L LOCALE]
[-S] [--blanks] [--date-format DATE_FORMAT]
[--datetime-format DATETIME_FORMAT] [-H] [-K SKIP_LINES] [-v]
[-l] [--zero] [-V] [-c COLUMNS] [--outer] [--left] [--right]
[-y SNIFF_LIMIT] [-I]
[FILE [FILE ...]]

Execute a SQL-like join to merge CSV files on a specified column or columns.

positional arguments:
FILE The CSV files to operate on. If only one is specified,

it will be copied to STDOUT.

optional arguments:
-h, --help show this help message and exit
-c COLUMNS, --columns COLUMNS

The column name(s) on which to join. Should be either
one name (or index) or a comma-separated list with one
name (or index) for each file, in the same order that
the files were specified. May also be left
unspecified, in which case the two files will be
joined sequentially without performing any matching.

--outer Perform a full outer join, rather than the default
inner join.

--left Perform a left outer join, rather than the default
inner join. If more than two files are provided this
will be executed as a sequence of left outer joins,
starting at the left.

--right Perform a right outer join, rather than the default
inner join. If more than two files are provided this
will be executed as a sequence of right outer joins,
starting at the right.

-y SNIFF_LIMIT, --snifflimit SNIFF_LIMIT
Limit CSV dialect sniffing to the specified number of
bytes. Specify "0" to disable sniffing entirely.

-I, --no-inference Disable type inference when parsing CSV input.

Note that the join operation requires reading all files into memory. Don't try
this on very large files.

See also: Arguments common to all tools.

Examples

csvjoin -c 1 examples/join_a.csv examples/join_b.csv

Add two empty columns to the right of a CSV:

echo "," | csvjoin examples/dummy.csv -

Add a single column to the right of a CSV:

echo "new-column" | csvjoin examples/dummy.csv -

24 Chapter 3. Table of contents

csvkit, Release 1.0.5

csvsort

Description

Sort CSV files. Like the Unix “sort” command, but for tabular data:

usage: csvsort [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-L LOCALE]
[-S] [--blanks] [--date-format DATE_FORMAT]
[--datetime-format DATETIME_FORMAT] [-H] [-K SKIP_LINES] [-v]
[-l] [--zero] [-V] [-n] [-c COLUMNS] [-r] [-y SNIFF_LIMIT] [-I]
[FILE]

Sort CSV files. Like the Unix "sort" command, but for tabular data.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
-n, --names Display column names and indices from the input CSV

and exit.
-c COLUMNS, --columns COLUMNS

A comma separated list of column indices, names or
ranges to sort by, e.g. "1,id,3-5". Defaults to all
columns.

-r, --reverse Sort in descending order.
-y SNIFF_LIMIT, --snifflimit SNIFF_LIMIT

Limit CSV dialect sniffing to the specified number of
bytes. Specify "0" to disable sniffing entirely.

-I, --no-inference Disable type inference when parsing the input.

See also: Arguments common to all tools.

Note: If your file is large, try sort -t, file.csv instead.

Examples

Sort the veteran’s education benefits table by the “TOTAL” column:

csvsort -c 9 examples/realdata/FY09_EDU_Recipients_by_State.csv

View the five states with the most individuals claiming veteran’s education benefits:

csvcut -c 1,9 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvsort -r -c 2 |
→˓head -n 5

csvstack

Description

Stack up the rows from multiple CSV files, optionally adding a grouping value to each row:

3.2. Reference 25

csvkit, Release 1.0.5

usage: csvstack [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-S] [-H]
[-K SKIP_LINES] [-v] [-l] [--zero] [-V] [-g GROUPS]
[-n GROUP_NAME] [--filenames]
FILE [FILE ...]

Stack up the rows from multiple CSV files, optionally adding a grouping value.
Files are assumed to have the same columns in the same order.

positional arguments:
FILE The CSV file(s) to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
-g GROUPS, --groups GROUPS

A comma-separated list of values to add as "grouping
factors", one for each CSV being stacked. These will
be added to the stacked CSV as a new column. You may
specify a name for the grouping column using the -n
flag.

-n GROUP_NAME, --group-name GROUP_NAME
A name for the grouping column, e.g. "year". Only used
when also specifying -g.

--filenames Use the filename of each input file as its grouping
value. When specified, -g will be ignored.

See also: Arguments common to all tools.

Examples

Contrived example: joining a set of homogoenous files for different years:

csvstack -g 2009,2010 examples/realdata/FY09_EDU_Recipients_by_State.csv examples/
→˓realdata/Datagov_FY10_EDU_recp_by_State.csv

Add a single column to the left of a CSV:

csvstack -n NEWCOL -g "" examples/dummy.csv

To change field values (i.e. to run sed or awk-like commands on CSV files), consider miller (mlr put).

To transpose CSVs, consider csvtool. Install csvtool on Linux using your package manager, or on macOS using:

brew install ocaml
opam install csv
ln -s ~/.opam/system/bin/csvtool /usr/local/bin/
csvtool --help

3.2.3 Output and Analysis

csvformat

26 Chapter 3. Table of contents

https://github.com/johnkerl/miller
http://colin.maudry.com/csvtool-manual-page/

csvkit, Release 1.0.5

Description

Convert a CSV file to a custom output format.:

usage: csvformat [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-S]
[--blanks] [-K SKIP_LINES] [-v] [-V] [-D OUT_DELIMITER] [-T]
[-Q OUT_QUOTECHAR] [-U {0,1,2,3}] [-B] [-P OUT_ESCAPECHAR]
[-M OUT_LINETERMINATOR]
[FILE]

Convert a CSV file to a custom output format.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
-D OUT_DELIMITER, --out-delimiter OUT_DELIMITER

Delimiting character of the output CSV file.
-T, --out-tabs Specify that the output CSV file is delimited with

tabs. Overrides "-D".
-Q OUT_QUOTECHAR, --out-quotechar OUT_QUOTECHAR

Character used to quote strings in the output CSV
file.

-U {0,1,2,3}, --out-quoting {0,1,2,3}
Quoting style used in the output CSV file. 0 = Quote
Minimal, 1 = Quote All, 2 = Quote Non-numeric, 3 =
Quote None.

-B, --out-no-doublequote
Whether or not double quotes are doubled in the output
CSV file.

-P OUT_ESCAPECHAR, --out-escapechar OUT_ESCAPECHAR
Character used to escape the delimiter in the output
CSV file if --quoting 3 ("Quote None") is specified
and to escape the QUOTECHAR if --no-doublequote is
specified.

-M OUT_LINETERMINATOR, --out-lineterminator OUT_LINETERMINATOR
Character used to terminate lines in the output CSV
file.

See also: Arguments common to all tools.

Examples

Convert a comma-separated file to a pipe-delimited file:

csvformat -D "|" examples/dummy.csv

Convert to carriage return line-endings:

csvformat -M $'\r' examples/dummy.csv

To avoid escaping quote characters when using --quoting 3, add --out-quotechar "":

3.2. Reference 27

csvkit, Release 1.0.5

csvformat -u 3 -U 3 -Q "" examples/optional_quote_characters.csv

csvjson

Description

Converts a CSV file into JSON or GeoJSON (depending on flags):

usage: csvjson [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-L LOCALE]
[-S] [--blanks] [--date-format DATE_FORMAT]
[--datetime-format DATETIME_FORMAT] [-H] [-K SKIP_LINES] [-v]
[-l] [--zero] [-V] [-i INDENT] [-k KEY] [--lat LAT] [--lon LON]
[--crs CRS] [--stream] [-y SNIFF_LIMIT] [-I]
[FILE]

Convert a CSV file into JSON (or GeoJSON).

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
-i INDENT, --indent INDENT

Indent the output JSON this many spaces. Disabled by
default.

-k KEY, --key KEY Output JSON as an array of objects keyed by a given
column, KEY, rather than as a list. All values in the
column must be unique. If --lat and --lon are also
specified, this column will be used as GeoJSON Feature
ID.

--lat LAT A column index or name containing a latitude. Output
will be GeoJSON instead of JSON. Only valid if --lon
is also specified.

--lon LON A column index or name containing a longitude. Output
will be GeoJSON instead of JSON. Only valid if --lat
is also specified.

--type TYPE A column index or name containing a GeoJSON type.
Output will be GeoJSON instead of JSON. Only valid if
--lat and --lon are also specified.

--geometry GEOMETRY A column index or name containing a GeoJSON geometry.
Output will be GeoJSON instead of JSON. Only valid if
--lat and --lon are also specified.

--crs CRS A coordinate reference system string to be included
with GeoJSON output. Only valid if --lat and --lon are
also specified.

--no-bbox Disable the calculation of a bounding box.
--stream Output JSON as a stream of newline-separated objects,

rather than an as an array.
-y SNIFF_LIMIT, --snifflimit SNIFF_LIMIT

Limit CSV dialect sniffing to the specified number of
bytes. Specify "0" to disable sniffing entirely.

-I, --no-inference Disable type inference (and --locale, --date-format,
--datetime-format) when parsing CSV input.

28 Chapter 3. Table of contents

csvkit, Release 1.0.5

See also: Arguments common to all tools.

Examples

Convert veteran’s education dataset to JSON keyed by state abbreviation:

csvjson -k "State Abbreviate" -i 4 examples/realdata/FY09_EDU_Recipients_by_State.csv

Results in a JSON document like:

{
[...]
"WA": {

"State Name": "WASHINGTON",
"State Abbreviate": "WA",
"Code": 53.0,
"Montgomery GI Bill-Active Duty": 7969.0,
"Montgomery GI Bill- Selective Reserve": 769.0,
"Dependents' Educational Assistance": 2192.0,
"Reserve Educational Assistance Program": 549.0,
"Post-Vietnam Era Veteran's Educational Assistance Program": 13.0,
"TOTAL": 11492.0,
"": null

},
[...]

}

Converting locations of public art into GeoJSON:

csvjson --lat latitude --lon longitude --k slug --crs EPSG:4269 -i 4 examples/test_
→˓geo.csv

Results in a GeoJSON document like:

{
"type": "FeatureCollection",
"bbox": [

-95.334619,
32.299076986939205,
-95.250699,
32.351434

],
"crs": {

"type": "name",
"properties": {

"name": "EPSG:4269"
}

},
"features": [

{
"type": "Feature",
"id": "dcl",
"geometry": {

"type": "Point",
"coordinates": [

-95.30181,

(continues on next page)

3.2. Reference 29

csvkit, Release 1.0.5

(continued from previous page)

32.35066
]

},
"properties": {

"title": "Downtown Coffee Lounge",
"artist": null,
"description": "In addition to being the only coffee shop in downtown

→˓Tyler, DCL also features regular exhibitions of work by local artists.",
"install_date": null,
"address": "200 West Erwin Street",
"type": "Gallery",
"photo_url": null,
"photo_credit": null,
"last_seen_date": "2012-03-30"

}
},
[...]

],
"crs": {

"type": "name",
"properties": {

"name": "EPSG:4269"
}

}
}

csvlook

Description

Renders a CSV to the command line in a Markdown-compatible, fixed-width format:

usage: csvlook [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-L LOCALE]
[-S] [--blanks] [--date-format DATE_FORMAT]
[--datetime-format DATETIME_FORMAT] [-H] [-K SKIP_LINES] [-v]
[-l] [--zero] [-V] [--max-rows MAX_ROWS]
[--max-columns MAX_COLUMNS]
[--max-column-width MAX_COLUMN_WIDTH] [-y SNIFF_LIMIT] [-I]
[FILE]

Render a CSV file in the console as a Markdown-compatible, fixed-width table.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
--max-rows MAX_ROWS The maximum number of rows to display before

truncating the data.
--max-columns MAX_COLUMNS

The maximum number of columns to display before
truncating the data.

--max-column-width MAX_COLUMN_WIDTH
(continues on next page)

30 Chapter 3. Table of contents

csvkit, Release 1.0.5

(continued from previous page)

Truncate all columns to at most this width. The
remainder will be replaced with ellipsis.

-y SNIFF_LIMIT, --snifflimit SNIFF_LIMIT
Limit CSV dialect sniffing to the specified number of
bytes. Specify "0" to disable sniffing entirely.

-I, --no-inference Disable type inference when parsing the input.

If a table is too wide to display properly try piping the output to less -S or truncating it using csvcut.

If the table is too long, try filtering it down with grep or piping the output to less.

See also: Arguments common to all tools.

Examples

Basic use:

csvlook examples/testfixed_converted.csv

This tool is especially useful as a final operation when piping through other tools:

csvcut -c 9,1 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvlook

csvpy

Description

Loads a CSV file into a agate.csv.Reader object and then drops into a Python shell so the user can inspect the
data however they see fit:

usage: csvpy [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-L LOCALE]
[-S] [--blanks] [--date-format DATE_FORMAT]
[--datetime-format DATETIME_FORMAT] [-H] [-K SKIP_LINES] [-v]
[-l] [--zero] [-V] [--dict] [--agate]
[FILE]

Load a CSV file into a CSV reader and then drop into a Python shell.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
--dict Load the CSV file into a DictReader.
--agate Load the CSV file into an agate table.

This tool will automatically use the IPython shell if it is installed, otherwise it will use the running Python shell.

Note: Due to platform limitations, csvpy does not accept file input as piped data via STDIN.

See also: Arguments common to all tools.

3.2. Reference 31

csvkit, Release 1.0.5

Examples

Basic use:

csvpy examples/dummy.csv
Welcome! "examples/dummy.csv" has been loaded in a reader object named "reader".
>>> reader.next()
[u'a', u'b', u'c']

As a dictionary:

csvpy --dict examples/dummy.csv
Welcome! "examples/dummy.csv" has been loaded in a DictReader object named "reader".
>>> reader.next()
{u'a': u'1', u'c': u'3', u'b': u'2'}

As an agate table:

csvpy --agate examples/dummy.csv
Welcome! "examples/dummy.csv" has been loaded in a from_csv object named "reader".
>>> reader.print_table()
| a | b | c |
| ---- | - | - |
| True | 2 | 3 |

csvsql

Description

Generate SQL statements for a CSV file or execute those statements directly on a database. In the latter case supports
both creating tables and inserting data:

usage: csvsql [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-L LOCALE]
[-S] [--blanks] [--date-format DATE_FORMAT]
[--datetime-format DATETIME_FORMAT] [-H] [-K SKIP_LINES] [-v]
[-l] [--zero] [-V]
[-i {firebird,mssql,mysql,oracle,postgresql,sqlite,sybase,crate}]
[--db CONNECTION_STRING] [--query QUERY] [--insert]
[--prefix PREFIX] [--tables TABLE_NAMES] [--no-constraints]
[--unique-constraint UNIQUE_CONSTRAINT] [--no-create]
[--create-if-not-exists] [--overwrite] [--db-schema DB_SCHEMA]
[-y SNIFF_LIMIT] [-I] [--chunk-size NUM]
[FILE [FILE ...]]

Generate SQL statements for one or more CSV files, or execute those statements
directly on a database, and execute one or more SQL queries.

positional arguments:
FILE The CSV file(s) to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
-i {firebird,mssql,mysql,oracle,postgresql,sqlite,sybase,crate}, --dialect

→˓{firebird,mssql,mysql,oracle,postgresql,sqlite,sybase,crate}
(continues on next page)

32 Chapter 3. Table of contents

csvkit, Release 1.0.5

(continued from previous page)

Dialect of SQL to generate. Only valid when --db is
not specified.

--db CONNECTION_STRING
If present, a sqlalchemy connection string to use to
directly execute generated SQL on a database.

--query QUERY Execute one or more SQL queries delimited by ";" and
output the result of the last query as CSV. QUERY may
be a filename.

--insert In addition to creating the table, also insert the
data into the table. Only valid when --db is
specified.

--prefix PREFIX Add an expression following the INSERT keyword, like
OR IGNORE or OR REPLACE.

--tables TABLE_NAMES A comma-separated list of names of tables to be
created. By default, the tables will be named after
the filenames without extensions or "stdin".

--no-constraints Generate a schema without length limits or null
checks. Useful when sampling big tables.

--unique-constraint UNIQUE_CONSTRAINT
A column-separated list of names of columns to include
in a UNIQUE constraint.

--no-create Skip creating a table. Only valid when --insert is
specified.

--create-if-not-exists
Create table if it does not exist, otherwise keep
going. Only valid when --insert is specified.

--overwrite Drop the table before creating. Only valid when
--insert is specified and --no-create is not
specified.

--db-schema DB_SCHEMA
Optional name of database schema to create table(s)
in.

-y SNIFF_LIMIT, --snifflimit SNIFF_LIMIT
Limit CSV dialect sniffing to the specified number of
bytes. Specify "0" to disable sniffing entirely.

-I, --no-inference Disable type inference when parsing the input.
--chunk-size NUM

Chunk size for batch insert into the table.
Only valid when --insert is specified.

See also: Arguments common to all tools.

For information on connection strings and supported dialects refer to the SQLAlchemy documentation.

If you prefer not to enter your password in the connection string, store the password securely in a PostgreSQL Password
File, a MySQL Options File or similar files for other systems.

Note: Using the --query option may cause rounding (in Python 2) or introduce [Python floating point issues](https:
//docs.python.org/3.4/tutorial/floatingpoint.html) (in Python 3).

Note: Alternatives to csvsql are q and textql.

3.2. Reference 33

http://www.sqlalchemy.org/docs/dialects/
https://www.postgresql.org/docs/9.1/static/libpq-pgpass.html
https://www.postgresql.org/docs/9.1/static/libpq-pgpass.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://docs.python.org/3.4/tutorial/floatingpoint.html
https://docs.python.org/3.4/tutorial/floatingpoint.html
https://github.com/harelba/q
https://github.com/dinedal/textql

csvkit, Release 1.0.5

Examples

Generate a statement in the PostgreSQL dialect:

csvsql -i postgresql examples/realdata/FY09_EDU_Recipients_by_State.csv

Create a table and import data from the CSV directly into PostgreSQL:

createdb test
csvsql --db postgresql:///test --tables fy09 --insert examples/realdata/FY09_EDU_
→˓Recipients_by_State.csv

For large tables it may not be practical to process the entire table. One solution to this is to analyze a sample of the
table. In this case it can be useful to turn off length limits and null checks with the --no-constraints option:

head -n 20 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvsql --no-
→˓constraints --tables fy09

Create tables for an entire folder of CSVs and import data from those files directly into PostgreSQL:

createdb test
csvsql --db postgresql:///test --insert examples/*_converted.csv

If those CSVs have identical headers, you can import them into the same table by using csvstack first:

createdb test
csvstack examples/dummy?.csv | csvsql --db postgresql:///test --insert

Group rows by one column:

csvsql --query "select * from 'dummy3' group by a" examples/dummy3.csv

You can also use CSVSQL to “directly” query one or more CSV files. Please note that this will create an in-memory
SQL database, so it won’t be very fast:

csvsql --query "select m.usda_id, avg(i.sepal_length) as mean_sepal_length from iris
→˓as i join irismeta as m on (i.species = m.species) group by m.species" examples/
→˓iris.csv examples/irismeta.csv

Concatenate two columns:

csvsql --query "select a || b from 'dummy3'" examples/dummy3.csv

If a column contains null values, you must COALESCE the column:

csvsql --query "select a || COALESCE(b, '') from 'sort_ints_nulls'" --no-inference
→˓examples/sort_ints_nulls.csv

csvstat

Description

Prints descriptive statistics for all columns in a CSV file. Will intelligently determine the type of each column and
then print analysis relevant to that type (ranges for dates, mean and median for integers, etc.):

34 Chapter 3. Table of contents

csvkit, Release 1.0.5

usage: csvstat [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z FIELD_SIZE_LIMIT] [-e ENCODING] [-S] [-H]
[-K SKIP_LINES] [-v] [-l] [--zero] [-V] [--csv] [-n]
[-c COLUMNS] [--type] [--nulls] [--unique] [--min] [--max]
[--sum] [--mean] [--median] [--stdev] [--len] [--freq]
[--freq-count FREQ_COUNT] [--count] [-y SNIFF_LIMIT]
[FILE]

Print descriptive statistics for each column in a CSV file.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input as piped data via STDIN.

optional arguments:
-h, --help show this help message and exit
--csv Output results as a CSV, rather than text.
-n, --names Display column names and indices from the input CSV

and exit.
-c COLUMNS, --columns COLUMNS

A comma separated list of column indices, names or
ranges to be examined, e.g. "1,id,3-5". Defaults to
all columns.

--type Only output data type.
--nulls Only output whether columns contains nulls.
--unique Only output counts of unique values.
--min Only output smallest values.
--max Only output largest values.
--sum Only output sums.
--mean Only output means.
--median Only output medians.
--stdev Only output standard deviations.
--len Only output the length of the longest values.
--freq Only output lists of frequent values.
--freq-count FREQ_COUNT

The maximum number of frequent values to display.
--count Only output total row count.
-y SNIFF_LIMIT, --snifflimit SNIFF_LIMIT

Limit CSV dialect sniffing to the specified number of
bytes. Specify "0" to disable sniffing entirely.

See also: Arguments common to all tools.

Examples

Basic use:

csvstat examples/realdata/FY09_EDU_Recipients_by_State.csv

When an statistic name is passed, only that stat will be printed:

csvstat --min examples/realdata/FY09_EDU_Recipients_by_State.csv

1. State Name: None
2. State Abbreviate: None
3. Code: 1

(continues on next page)

3.2. Reference 35

csvkit, Release 1.0.5

(continued from previous page)

4. Montgomery GI Bill-Active Duty: 435
5. Montgomery GI Bill- Selective Reserve: 48
6. Dependents' Educational Assistance: 118
7. Reserve Educational Assistance Program: 60
8. Post-Vietnam Era Veteran's Educational Assistance Program: 1
9. TOTAL: 768

10. j: None

If a single stat and a single column are requested, only a value will be returned:

csvstat -c 4 --mean examples/realdata/FY09_EDU_Recipients_by_State.csv

6,263.904

• To draw plots, consider jp.

• To diff CSVs, consider daff.

• To explore CSVs interactively, consider VisiData.

Alternatives to csvsql are q and textql.

3.2.4 Common arguments

Arguments common to all tools

csvkit’s tools share a set of common command-line arguments. Not every argument is supported by every tool, so
please check which are supported by the tool you are using with the --help flag:

-d DELIMITER, --delimiter DELIMITER
Delimiting character of the input CSV file.

-t, --tabs Specify that the input CSV file is delimited with
tabs. Overrides "-d".

-q QUOTECHAR, --quotechar QUOTECHAR
Character used to quote strings in the input CSV file.

-u {0,1,2,3}, --quoting {0,1,2,3}
Quoting style used in the input CSV file. 0 = Quote
Minimal, 1 = Quote All, 2 = Quote Non-numeric, 3 =
Quote None.

-b, --no-doublequote Whether or not double quotes are doubled in the input
CSV file.

-p ESCAPECHAR, --escapechar ESCAPECHAR
Character used to escape the delimiter if --quoting 3
("Quote None") is specified and to escape the
QUOTECHAR if --no-doublequote is specified.

-z FIELD_SIZE_LIMIT, --maxfieldsize FIELD_SIZE_LIMIT
Maximum length of a single field in the input CSV
file.

-e ENCODING, --encoding ENCODING
Specify the encoding of the input CSV file.

-L LOCALE, --locale LOCALE
Specify the locale (en_US) of any formatted numbers.

-S, --skipinitialspace
Ignore whitespace immediately following the delimiter.

--blanks Do not coerce empty, "na", "n/a", "none", "null", "."
strings to NULL values.

(continues on next page)

36 Chapter 3. Table of contents

https://github.com/sgreben/jp
https://github.com/paulfitz/daff
http://visidata.org
https://github.com/harelba/q
https://github.com/dinedal/textql

csvkit, Release 1.0.5

(continued from previous page)

--date-format DATE_FORMAT
Specify a strptime date format string like "%m/%d/%Y".

--datetime-format DATETIME_FORMAT
Specify a strptime datetime format string like
"%m/%d/%Y %I:%M %p".

-H, --no-header-row Specify that the input CSV file has no header row.
Will create default headers (a,b,c,...).

-K SKIP_LINES, --skip-lines SKIP_LINES
Specify the number of initial lines to skip before the
header row (e.g. comments, copyright notices, empty
rows).

-v, --verbose Print detailed tracebacks when errors occur.
-l, --linenumbers Insert a column of line numbers at the front of the

output. Useful when piping to grep or as a simple
primary key.

--zero When interpreting or displaying column numbers, use
zero-based numbering instead of the default 1-based
numbering.

-V, --version Display version information and exit.

These arguments can be used to override csvkit’s default “smart” parsing of CSV files. This may be necessary, for
example, if the input file uses a particularly unusual quoting style or has an encoding that is incompatible with UTF-8.

For example, to disable CSV sniffing, set --snifflimit 0 and then, if necessary, set the --delimiter and
--quotechar options yourself. To disable type inference, add the --no-inference flag.

The output of csvkit’s tools is always formatted with “default” formatting options. This means that when executing
multiple csvkit commands (either with a pipe or through intermediary files) it is only ever necessary to specify these
arguments the first time (and doing so for subsequent commands will likely cause them to fail).

See the documentation of csvclean for a description of the default formatting options.

3.3 Tips and Troubleshooting

3.3.1 Tips

Reading compressed CSVs

csvkit has builtin support for reading gzip or bz2 compressed input files. This is automatically detected based on
the file extension. For example:

csvstat examples/dummy.csv.gz
csvstat examples/dummy.csv.bz2

Please note, the files are decompressed in memory, so this is a convenience, not an optimization.

Specifying STDIN as a file

Most tools use STDIN as input if no filename is given, but tools that accept multiple inputs like csvjoin and csvstack
don’t. To use STDIN as an input to these tools, use - as the filename. For example, these three commands produce
the same output:

3.3. Tips and Troubleshooting 37

csvkit, Release 1.0.5

csvstat examples/dummy.csv
cat examples/dummy.csv | csvstat
cat examples/dummy.csv | csvstat -

csvstack can take a filename and STDIN as input, for example:

cat examples/dummy.csv | csvstack examples/dummy3.csv -

Alternately, you can pipe in multiple inputs like so:

csvjoin -c id <(csvcut -c 2,5,6 a.csv) <(csvcut -c 1,7 b.csv)

3.3.2 Troubleshooting

Installation

csvkit is supported on:

• Python 2.7+

• Python 3.3+

It is tested on macOS, and has also been used on Linux and Windows.

If installing on macOS, you may need to install Homebrew first:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install)"
brew install python
pip install csvkit

If installing on Ubuntu, you may need to install Python’s development headers first:

sudo apt-get install python-dev python-pip python-setuptools build-essential
pip install csvkit

If the installation is successful but csvkit’s tools fail, you may need to update Python’s setuptools package first:

pip install --upgrade setuptools
pip install --upgrade csvkit

On macOS, if you see OSError: [Errno 1] Operation not permitted, try:

sudo pip install --ignore-installed csvkit

If you use Python 2 and have a recent version of pip, you may need to run pip with --allow-external
argparse.

If you use Python 2 on FreeBSD, you may need to install py-sqlite3.

Note: Need more speed? If you use Python 2, pip install cdecimal for a boost.

38 Chapter 3. Table of contents

https://www.freshports.org/databases/py-sqlite3/

csvkit, Release 1.0.5

CSV formatting and parsing

• Are values appearing in incorrect columns?

• Does the output combine multiple fields into a single column with double-quotes?

• Does the outplit split a single field into multiple columns?

• Are csvstat -c 1 and csvstat --count reporting inconsistent row counts?

• Do you see Row # has # values, but Table only has # columns.?

These may be symptoms of CSV sniffing gone wrong. As there is no single, standard CSV format, csvkit uses Python’s
csv.Sniffer to deduce the format of a CSV file: that is, the field delimiter and quote character. By default, the entire
file is sent for sniffing, which can be slow. You can send a small sample with the --snifflimit option. If you’re
encountering any cases above, you can try setting --snifflimit 0 to disable sniffing and set the --delimiter
and --quotechar options yourself.

Although these issues are annoying, in most cases, CSV sniffing Just Works™. Disabling sniffing by default would
produce a lot more issues than enabling it by default.

CSV data interpretation

• Are the numbers 1 and 0 being interepted as True and False?

• Are phone numbers changing to integers and losing their leading + or 0?

• Is the Italian comune of “None” being treated as a null value?

These may be symptoms of csvkit’s type inference being too aggressive for your data. CSV is a text format, but it may
contain text representing numbers, dates, booleans or other types. csvkit attempts to reverse engineer that text into
proper data types—a process called “type inference”.

For some data, type inference can be error prone. If necessary you can disable it with the --no-inference switch.
This will force all columns to be treated as regular text.

Slow performance

csvkit’s tools fall into two categories: Those that load an entire CSV into memory (e.g. csvstat) and those that only
read data one row at a time (e.g. csvcut). Those that stream results will generally be very fast. See Contributing to
csvkit for a full list. For those that buffer the entire file, the slowest part of that process is typically the “type inference”
described in the previous section.

If a tool is too slow to be practical for your data try setting the --snifflimit option or using the
--no-inference.

Database errors

Are you seeing this error message, even after running pip install psycopg2 or pip install
mysql-connector-python?

You don't appear to have the necessary database backend installed for connection
→˓string you're trying to use. Available backends include:

Postgresql: pip install psycopg2
MySQL: pip install mysql-connector-python

(continues on next page)

3.3. Tips and Troubleshooting 39

https://docs.python.org/3.5/library/csv.html#csv.Sniffer

csvkit, Release 1.0.5

(continued from previous page)

For details on connection strings and other backends, please see the SQLAlchemy
→˓documentation on dialects at:

http://www.sqlalchemy.org/docs/dialects/

First, make sure that you can open a python interpreter and run import psycopg2. If you see an er-
ror containing mach-o, but wrong architecture, you may need to reinstall psycopg2 with export
ARCHFLAGS="-arch i386" pip install --upgrade psycopg2 (source). If you see another error, you
may be able to find a solution on StackOverflow.

Python standard output encoding errors

If, when running a command like csvlook dummy.csv | less you get an error like:

'ascii' codec can't encode character u'\u0105' in position 2: ordinal not in
→˓range(128)

The simplest option is to set the encoding that Python uses for standard streams, using the PYTHONIOENCODING
environment variable:

PYTHONIOENCODING=utf8 csvlook dummy.csv | less

3.4 Contributing to csvkit

csvkit actively encourages contributions from people of all genders, races, ethnicities, ages, creeds, nationalities,
persuasions, alignments, sizes, shapes, and journalistic affiliations. You are welcome here.

We seek contributions from developers and non-developers of all skill levels. We will typically accept bug fixes and
documentation updates with minimal fuss. If you want to work on a larger feature—great! The maintainers will be
happy to provide feedback and code review on your implementation.

Before making any changes or additions to csvkit, please be sure to read the rest of this document, especially the
“Principles of development” section.

3.4.1 Getting Started

Set up your environment for development:

git clone git://github.com/wireservice/csvkit.git
cd csvkit
mkvirtualenv csvkit

If running Python 2:
pip install -r requirements-py2.txt

If running Python 3:
pip install -r requirements-py3.txt

python setup.py develop
tox

40 Chapter 3. Table of contents

http://www.destructuring.net/2013/07/31/trouble-installing-psycopg2-on-osx/

csvkit, Release 1.0.5

3.4.2 Principles of development

csvkit is to tables as Unix text processing commands (cut, grep, cat, sort) are to text. As such, csvkit adheres to the
Unix philosophy.

1. Small is beautiful.

2. Make each program do one thing well.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces.

9. Make every program a filter.

As there is no single, standard CSV format, csvkit encourages popular formatting options:

• Output targets broad compatibility: Quoting is done with double-quotes and only when required. Fields are
delimited with commas. Rows are terminated with Unix line endings (“\n”).

• Output favors consistency over brevity: Numbers always include at least one decimal place, even if they are
round. Dates and times are output in ISO 8601 format. Null values are rendered as empty strings.

3.4.3 How to contribute

1. Fork the project on GitHub.

2. Look through the open issues for a task that you can realistically expect to complete in a few days. Don’t worry
about the issue’s priority; instead, choose something you’ll enjoy. You’re more likely to finish something if you
enjoy hacking on it.

3. Comment on the issue to let people know you’re going to work on it so that no one duplicates your effort. It’s
good practice to provide a general idea of how you plan to resolve the issue so that others can make suggestions.

4. Write tests for any changes to the code’s behavior. Follow the format of the tests in the tests/ directory
to see how this works. You can run all the tests with the command tox, or just your Python version’s with
nosetests (faster).

5. Write the code. Try to be consistent with the style and organization of the existing code. A good contribution
won’t be refused for stylistic reasons, but large parts of it may be rewritten and nobody wants that.

6. As you’re working, periodically merge in changes from the upstream master branch to avoid having to resolve
large merge conflicts. Check that you haven’t broken anything by running the tests.

7. Write documentation for any user-facing features.

8. Once it works, is tested, and is documented, submit a pull request on GitHub.

9. Wait for it to be merged or for a comment about what needs to be changed.

10. Rejoice.

3.4. Contributing to csvkit 41

http://en.wikipedia.org/wiki/Unix_philosophy
http://en.wikipedia.org/wiki/Unix_philosophy
https://github.com/wireservice/csvkit
https://github.com/wireservice/csvkit/issues

csvkit, Release 1.0.5

3.4.4 A note on new tools

As a general rule, csvkit is no longer adding new tools. This is the result of limited maintenance time as well as a desire
to keep the toolkit focused on the most common use cases. Exceptions may be made to this rule on a case-by-case
basis. We, of course, welcome patches to improve existing tools or add useful features.

If you decide to build your own tool, we encourage you to create and maintain it as a separate Python package. You
will probably want to use the agate library, which csvkit uses for most of its CSV reading and writing. Doing so will
safe time and make it easier to maintain common behavior with csvkit’s core tools.

3.4.5 Streaming versus buffering

csvkit tools operate in one of two fashions: Some, such as csvsort, buffer their entire input into memory before writing
any output. Other tools—those that can operate on individual records—write write a row immediately after reading
a row. Records are “streamed” through the tool. Streaming tools produce output faster and require less memory than
buffering tools.

For performance reasons tools should always offer streaming when possible. If a new feature would undermine
streaming functionality it must be balanced against the utility of having a tool that can efficiently operate over large
datasets.

Currently, the following tools stream:

• csvclean

• csvcut

• csvformat

• csvgrep

• csvstack

• sql2csv

Currently, the following tools buffer:

• csvjoin

• csvjson unless --stream --no-inference --snifflimit 0 is set and --skip-lines isn’t set

• csvlook

• csvpy

• csvsort

• csvsql

• csvstat

• in2csv unless --format ndjson --no-inference is set, or unless --format csv
--no-inference --snifflimit 0 is set and --no-header-row and --skip-lines aren’t
set

3.4.6 Legalese

To the extent that contributors care, they should keep the following legal mumbo-jumbo in mind:

The source of csvkit and therefore of any contributions are licensed under the permissive MIT license. By submitting
a patch or pull request you are agreeing to release your contribution under this license. You will be acknowledged in

42 Chapter 3. Table of contents

http://agate.readthedocs.io/
http://www.opensource.org/licenses/mit-license.php

csvkit, Release 1.0.5

the AUTHORS file. As the owner of your specific contributions you retain the right to privately relicense your specific
contributions (and no others), however, the released version of the code can never be retracted or relicensed.

3.5 Release process

1. Verify no high priority issues are outstanding.

2. Run the full test suite with fresh environments for all versions: tox -r (Everything MUST pass.)

3. Ensure these files all have the correct version number:

• CHANGELOG.rst

• setup.py

• docs/conf.py

• csvkit/cli.py

4. Tag the release: git tag -a x.y.z -m 'x.y.z release.'; git push --tags

5. Roll out to PyPI: python setup.py sdist upload

6. Iterate the version number in all files where it is specified. (see list above)

7. Flag the new version for building on Read the Docs.

8. Wait for the documentation build to finish.

9. Flag the new release as the default documentation version.

10. Announce the release on Twitter, etc.

3.6 License

The MIT License

Copyright (c) 2016 Christopher Groskopf and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.5. Release process 43

https://github.com/wireservice/csvkit/issues?q=is%3Aopen+is%3Aissue+label%3A%22High+Priority%22
https://readthedocs.org/dashboard/csvkit/versions/

csvkit, Release 1.0.5

3.7 Changelog

3.7.1 1.0.5 - March 2, 2020

Changes:

• Dropped Python 3.4 support (end-of-life was March 18, 2019).

Improvements:

• Output error message for memory error even if not --verbose.

Fixes:

• Fix regression in 1.0.4, which caused numbers like 4.5 to be parsed as dates.

• in2csv Fix error reporting if --names used with non-Excel file.

3.7.2 1.0.4 - March 16, 2019

Changes:

• Dropped Python 3.3 support (end-of-life was September 29, 2017).

Improvements:

• csvsql adds a --chunk-size option to set the chunk size when batch inserting into a table.

• csvkit is now tested against Python 3.7.

Fixes:

• --names works with --skip-lines.

• Dates and datetimes without punctuation can be parsed with --date-format and datetime-format.

• Error messages about column indices use 1-based numbering unless --zero is set.

• csvcut no longer errors on --delete-empty-rows with short rows.

• csvjoin no longer errors if given a single file.

• csvsql supports UPDATE commands.

• csvstat no longer errors on non-finite numbers.

• csvstat respects all command-line arguments when --count is set.

• in2csv CSV-to-CSV conversion respects --linenumbers when buffering.

• in2csv writes XLS sheets without encoding errors in Python 2.

3.7.3 1.0.3 - March 11, 2018

Improvements:

• csvgrep adds a --any-match (-a) flag to select rows where any column matches instead of all columns.

• csvjson no longer emits a property if its value is null.

• csvjson adds --type and --geometry options to emit non-Point GeoJSON features.

• csvjson adds a --no-bbox option to disable the calculation of a bounding box.

44 Chapter 3. Table of contents

csvkit, Release 1.0.5

• csvjson supports --stream for newline-delimited GeoJSON.

• csvsql adds a --unique-constraint option to list names of columns to include in a UNIQUE constraint.

• csvsql adds --before-insert and --after-insert options to run commands before and after the IN-
SERT command.

• csvpy reports an error message if input is provided via STDIN.

• in2csv adds a --encoding-xls option to specify the encoding of the input XLS file.

• in2csv supports --no-header-row on XLS and XLSX files.

• Suppress agate warning about column names not specified when using --no-header-row.

• Prompt the user if additional input is expected (i.e. if no input file or piped data is provided).

• Update to agate-excel 0.2.2, agate-sql 0.5.3.

Fixes:

• csvgrep accepts utf-8 arguments to the --match and --regex options in Python 2.

• csvjson streams input and output only if --snifflimit is 0.

• csvsql sets a DECIMAL’s precision and scale and a VARCHAR’s length to avoid dialect-specific errors.

• csvstack no longer opens all files at once.

• in2csv respects --no-header-row when --no-inference is set.

• in2csv CSV-to-CSV conversion streams input and output only if --snifflimit is 0.

• in2csv supports GeoJSON files with: geometry set to null, missing Point coordinates, altitude coordi-
nate values.

csvkit is no longer tested on PyPy.

3.7.4 1.0.2 - April 28, 2017

Improvements:

• Add a --version flag.

• Add a --skip-lines option to skip initial lines (e.g. comments, copyright notices, empty rows).

• Add a --locale option to set the locale of any formatted numbers.

• Add a --date-format option to set a strptime date format string.

• Add a --datetime-format option to set a strptime datetime format string.

• Make --blanks a common argument across all tools.

• -I is the short option for --no-inference.

• csvclean, csvformat, csvjson, csvpy support --no-header-row.

• csvclean is faster and no longer requires exponential time in the worst case.

• csvformat supports --linenumbers and –zero (no-op).

• csvjoin supports --snifflimit and --no-inference.

• csvpy supports --linenumbers (no-op) and --zero (no-op).

• csvsql adds a --prefix option to add expressions like OR IGNORE or OR REPLACE following the INSERT
keyword.

3.7. Changelog 45

http://agate-excel.readthedocs.io/en/0.2.2/#changelog
http://agate-sql.readthedocs.io/en/0.5.3/#changelog

csvkit, Release 1.0.5

• csvsql adds a --overwrite flag to drop any existing table with the same name before creating.

• csvsql accepts a file name for the --query option.

• csvsql supports --linenumbers (no-op).

• csvsql adds a --create-if-not-exists flag to not abort if the table already exists.

• csvstat adds a --freq-count option to set the maximum number of frequent values to display.

• csvstat supports --linenumbers (no-op).

• in2csv adds a --names flag to print Excel sheet names.

• in2csv adds a --write-sheets option to write the named Excel sheets to files.

• sql2csv adds an --encoding option to specify the encoding of the input query file.

Fixes:

• csvgrep no longer ignores common arguments if --linenumbers is set.

• csvjson supports Decimal.

• csvpy again supports IPython.

• csvsql restores support for --no-constraints and --db-schema.

• csvstat will no longer crash when --freq is set.

• in2csv restores support for --no-inference for Excel files.

• in2csv restores support for converting Excel files from standard input.

• in2csv accepts utf-8 arguments to the --sheet option in Python 2.

3.7.5 1.0.1 - December 29, 2016

This is a minor release which fixes several bugs reported in the 1.0.0 release earlier this week. It also significantly
improves the output of csvstat and adds a --csv output option to that command.

• csvstat will no longer crash when a Number column has None as a frequent value. (#738)

• csvlook docs now note that output tables are Markdown-compatible. (#734)

• csvstat now supports a --csv flag for tabular output. (#584)

• csvstat output is now easier to read. (#714)

• csvpy now has a better description when using the --agate flag. (#729)

• Fix a Python 2.6 bug preventing csvjson from parsing utf-8 files. (#732)

• Update required version of unittest to latest. (#727)

3.7.6 1.0.0 - December 27, 2016

This is the first major release of csvkit in a very long time. The entire backend has been rewritten to leverage the agate
data analysis library, which was itself inspired by csvkit. The new backend provides better type detection accuracy, as
well as some new features.

Because of the long and complex cycle behind this release, the list of changes should not be considered exhaustive. In
particular, the output format of some tools may have changed in small ways. Any existing data pipelines using csvkit
should be tested as part of the upgrade.

46 Chapter 3. Table of contents

http://agate.rtfd.io

csvkit, Release 1.0.5

Much of the credit for this release goes to James McKinney, who has almost single-handedly kept the csvkit fire
burning for a year. Thanks, James!

Backwards-incompatible changes:

• csvjoin now renames duplicate columns with integer suffixes to prevent collisions in output.

• csvsql now generates DateTime columns instead of Time columns.

• csvsql now generates Decimal columns instead of Integer, BigInteger, and Float columns.

• csvsql no longer generates max-length constraints for text columns.

• The --doublequote long flag is gone, and the -b short flag is now an alias for --no-doublequote.

• When using the --columns or --not-columns options, you must not have spaces around the comma-
separated values, unless the column names contain spaces.

• When sorting, null values are now greater than other values instead of less than.

• CSVKitReader, CSVKitWriter, CSVKitDictReader, and CSVKitDictWriter have been re-
moved. Use agate.csv.reader, agate.csv.writer, agate.csv.DictReader and agate.
csv.DictWriter.

• Dropped support for older versions of PyPy.

• Dropped Python 2.6 support.

• If --no-header-row is set, the output will have column names a, b, c, etc. instead of column1, column2,
column3, etc.

• csvlook renders a simpler, markdown-compatible table.

Improvements:

• csvkit is now tested against Python 3.6. (#702)

• import csvkit as csv will now defer to agate readers/writers.

• csvgrep supports --no-header-row.

• csvjoin supports --no-header-row.

• csvjson streams input and output if the --stream and --no-inference flags are set.

• csvjson supports --snifflimit and --no-inference.

• csvlook adds --max-rows, --max-columns and --max-column-width options.

• csvlook supports --snifflimit and --no-inference.

• csvpy supports --agate to read a CSV file into an agate table.

• csvsql supports custom SQLAlchemy dialects.

• csvstat supports --names.

• in2csv CSV-to-CSV conversion streams input and output if the --no-inference flag is set.

• in2csv CSV-to-CSV conversion uses agate.Table.

• in2csv GeoJSON conversion adds columns for geometry type, longitude and latitude.

• Documentation: Update tool usage, remove shell prompts, document connection string, correct typos.

Fixes:

• Fixed numerous instances of open files not being closed before utilities exit.

• Change -b, --doublequote to --no-doublequote, as doublequote is True by default.

3.7. Changelog 47

https://github.com/jpmckinney
http://docs.sqlalchemy.org/en/latest/dialects/

csvkit, Release 1.0.5

• in2csv DBF conversion works with Python 3.

• in2csv correctly guesses format when file has an uppercase extension.

• in2csv correctly interprets --no-inference.

• in2csv again supports nested JSON objects (fixes regression).

• in2csv with --format geojson will print a JSON object instead of OrderedDict([(...)]).

• csvclean with standard input works on Windows.

• csvgrep returns the input file’s line numbers if the --linenumbers flag is set.

• csvgrep can match multiline values.

• csvgrep correctly operates on ragged rows.

• csvsql correctly escapes %` characters in SQL queries.

• csvsql adds standard input only if explicitly requested.

• csvstack supports stacking a single file.

• csvstat always reports frequencies.

• The any_match argument of FilteringCSVReader now works correctly.

• All tools handle empty files without error.

3.7.7 0.9.1 - March 31, 2015

• Add Antonio Lima to AUTHORS.

• Add support for ndjson. (#329)

• Add missing docs for csvcut -C. (#227)

• Reorganize docs so TOC works better. (#339)

• Render docs locally with RTD theme.

• Fix header in “tricks” docs.

• Add install instructions to tutorial. (#331)

• Add killer examples to doc index. (#328)

• Reorganize doc index

• Fix broken csvkit module documentation. (#327)

• Fix version of openpyxl to work around encoding issue. (#391, #288)

3.7.8 0.9.0 - September 8, 2014

• Write missing sections of the tutorial. (#32)

• Remove -q arg from sql2csv (conflicts with common flag).

• Fix csvjoin in case where left dataset rows without all columns.

• Rewrote tutorial based on LESO data. (#324)

• Don’t error in csvjson if lat/lon columns are null. (#326)

• Maintain field order in output of csvjson.

48 Chapter 3. Table of contents

csvkit, Release 1.0.5

• Add unit test for json in2csv. (#77)

• Maintain key order when converting JSON into CSV. (#325.)

• Upgrade python-dateutil to version 2.2 (#304)

• Fix sorting of columns with null values. (#302)

• Added release documentation.

• Fill out short rows with null values. (#313)

• Fix unicode output for csvlook and csvstat. (#315)

• Add documentation for –zero. (#323)

• Fix Integrity error when inserting zero rows in database with csvsql. (#299)

• Add Michael Mior to AUTHORS. (#305)

• Add –count option to CSVStat.

• Implement csvformat.

• Fix bug causing CSVKitDictWriter to output ‘utf-8’ for blank fields.

3.7.9 0.8.0 - July 27, 2014

• Add pnaimoli to AUTHORS.

• Fix column specification in csvstat. (#236)

• Added “Tips and Tricks” documentation. (#297, #298)

• Add Espartaco Palma to AUTHORS.

• Remove unnecessary enumerate calls. (#292)

• Deprecated DBF support for Python 3+.

• Add support for Python 3.3 and 3.4 (#239)

3.7.10 0.7.3 - April 27, 2014

• Fix date handling with openpyxl > 2.0 (#285)

• Add Kristina Durivage to AUTHORS. (#243)

• Added Richard Low to AUTHORS.

• Support SQL queries “directly” on CSV files. (#276)

• Add Tasneem Raja to AUTHORS.

• Fix off-by-one error in open ended column ranges. (#238)

• Add Matt Pettis to AUTHORS.

• Add line numbers flag to csvlook (#244)

• Only install argparse for Python < 2.7. (#224)

• Add Diego Rabatone Oliveira to AUTHORS.

• Add Ryan Murphy to AUTHORS.

• Fix DBF dependency. (#270)

3.7. Changelog 49

csvkit, Release 1.0.5

3.7.11 0.7.2 - March 24, 2014

• Fix CHANGELOG for release.

3.7.12 0.7.1 - March 24, 2014

• Fix homepage url in setup.py.

3.7.13 0.7.0 - March 24, 2014

• Fix XLSX datetime normalization bug. (#223)

• Add raistlin7447 to AUTHORS.

• Merged sql2csv utility (#259).

• Add Jeroen Janssens to AUTHORS.

• Validate csvsql DB connections before parsing CSVs. (#257)

• Clarify install process for Ubuntu. (#249)

• Clarify docs for –escapechar. (#242)

• Make import csvkit API compatible with import csv.

• Update Travis CI link. (#258)

• Add Sébastien Fievet to AUTHORS.

• Use case-sensitive name for SQLAlchemy (#237)

• Add Travis Swicegood to AUTHORS.

3.7.14 0.6.1 - August 20, 2013

• Fix CHANGELOG for release.

3.7.15 0.6.0 - August 20, 2013

• Add Chris Rosenthal to AUTHORS.

• Fix multi-file input to csvsql. (#193)

• Passing –snifflimit=0 to disable dialect sniffing. (#190)

• Add aarcro to the AUTHORS file.

• Improve performance of csvgrep. (#204)

• Add Matt Dudys to AUTHORS.

• Add support for –skipinitialspace. (#201)

• Add Joakim Lundborg to AUTHORS.

• Add –no-inference option to in2csv and csvsql. (#206)

• Add Federico Scrinzi to AUTHORS file.

• Add –no-header-row to all tools. (#189)

50 Chapter 3. Table of contents

csvkit, Release 1.0.5

• Fix csvstack blowing up on empty files. (#209)

• Add Chris Rosenthal to AUTHORS file.

• Add –db-schema option to csvsql. (#216)

• Add Shane StClair to AUTHORS file.

• Add –no-inference support to csvsort. (#222)

3.7.16 0.5.0 - August 21, 2012

• Implement geojson support in csvjson. (#159)

• Optimize writing of eight bit codecs. (#175)

• Created csvpy. (#44)

• Support –not-columns for excluding columns. (#137)

• Add Jan Schulz to AUTHORS file.

• Add Windows scripts. (#111, #176)

• csvjoin, csvsql and csvstack will no longer hold open all files. (#178)

• Added Noah Hoffman to AUTHORS.

• Make csvlook output compatible with emacs table markup. (#174)

3.7.17 0.4.4 - May 1, 2012

• Add Derek Wilson to AUTHORS.

• Add Kevin Schaul to AUTHORS.

• Add DBF support to in2csv. (#11, #160)

• Support –zero option for zero-based column indexing. (#144)

• Support mixing nulls and blanks in string columns.

• Add –blanks option to csvsql. (#149)

• Add multi-file (glob) support to csvsql. (#146)

• Add Gregory Temchenko to AUTHORS.

• Add –no-create option to csvsql. (#148)

• Add Anton Ian Sipos to AUTHORS.

• Fix broken pipe errors. (#150)

3.7.18 0.4.3 - February 20, 2012

• Begin CHANGELOG (a bit late, I’ll admit).

3.7. Changelog 51

csvkit, Release 1.0.5

52 Chapter 3. Table of contents

CHAPTER 4

Citation

When citing csvkit in publications, you may use this BibTeX entry:

@Manual{,
title = {csvkit},
author = {Christopher Groskopf and contributors},
year = 2016,
url = {https://csvkit.readthedocs.org/}

}

53

csvkit, Release 1.0.5

54 Chapter 4. Citation

CHAPTER 5

Authors

The following individuals have contributed code to csvkit:

• Christopher Groskopf

• Joe Germuska

• Aaron Bycoffe

• Travis Mehlinger

• Alejandro Companioni

• Benjamin Wilson

• Bryan Silverthorn

• Evan Wheeler

• Matt Bone

• Ryan Pitts

• Hari Dara

• Jeff Larson

• Jim Thaxton

• Miguel Gonzalez

• Anton Ian Sipos

• Gregory Temchenko

• Kevin Schaul

• Marc Abramowitz

• Noah Hoffman

• Jan Schulz

• Derek Wilson

55

csvkit, Release 1.0.5

• Chris Rosenthal

• Davide Setti

• Gabi Davar

• Sriram Karra

• James McKinney

• Aaron McMillin

• Matt Dudys

• Joakim Lundborg

• Federico Scrinzi

• Shane StClair

• raistlin7447

• Alex Dergachev

• Jeff Paine

• Jeroen Janssens

• Sébastien Fievet

• Travis Swicegood

• Ryan Murphy

• Diego Rabatone Oliveira

• Matt Pettis

• Tasneem Raja

• Richard Low

• Kristina Durivage

• Espartaco Palma

• pnaimoli

• Michael Mior

• Jennifer Smith

• Antonio Lima

• Dave Stanton

• Pedrow

• Neal McBurnett

• Anthony DeBarros

• Baptiste Mispelon

• James Seppi

• Karrie Kehoe

• Geert Barentsen

• Cathy Deng

56 Chapter 5. Authors

csvkit, Release 1.0.5

• Eric Bréchemier

• Neil Freeman

• Fede Isas

• Patricia Lipp

• Kev++

• edwardros

• Martin Burch

• Pedro Silva

• hydrosIII

• Tim Wisniewski

• Santiago Castro

• Dan Davison

• Éric Araujo

• Sam Stuck

• Edward Betts

• Jake Zimmerman

• Bryan Rankin

• Przemek Wesołek

• Karl Fogel

• sterlingpetersen

• kjedamzik

• John Vandenberg

• Olivier Lacan

• Adrien Delessert

• Ghislain Antony Vaillant

• Forest Gregg

• Aliaksei Urbanski

• Reid Beels

• Rodrigo Lemos

• Victor Noagbodji

• Connor McArthur

• Matěj Cepl

• Nicholas Matteo

• Matt Giguere

• Felix Bünemann

•

57

csvkit, Release 1.0.5

58 Chapter 5. Authors

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

59

	About
	Why csvkit?
	Table of contents
	Tutorial
	Getting started
	Examining the data
	Power tools
	Going elsewhere with your data

	Reference
	Input
	Processing
	Output and Analysis
	Common arguments

	Tips and Troubleshooting
	Tips
	Troubleshooting

	Contributing to csvkit
	Getting Started
	Principles of development
	How to contribute
	A note on new tools
	Streaming versus buffering
	Legalese

	Release process
	License
	Changelog
	1.0.5 - March 2, 2020
	1.0.4 - March 16, 2019
	1.0.3 - March 11, 2018
	1.0.2 - April 28, 2017
	1.0.1 - December 29, 2016
	1.0.0 - December 27, 2016
	0.9.1 - March 31, 2015
	0.9.0 - September 8, 2014
	0.8.0 - July 27, 2014
	0.7.3 - April 27, 2014
	0.7.2 - March 24, 2014
	0.7.1 - March 24, 2014
	0.7.0 - March 24, 2014
	0.6.1 - August 20, 2013
	0.6.0 - August 20, 2013
	0.5.0 - August 21, 2012
	0.4.4 - May 1, 2012
	0.4.3 - February 20, 2012

	Citation
	Authors
	Indices and tables

